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A special holograph plane is introduced for the study of’axisymmetric tmIisOnic 
flow. Investigation of mappings in this plane permits the generalization of a num- 

ber of known relations for plane transonic flow. 

The equations of axisymmetric transonic flow have the form [l] 

uux = vy + v I Y, u* = uv (u = (k + I) (h - 1) +, . . . . v = (k + i)b + ..*) 

Here k is the speed coefficient, p the angle of inclination of the velocity Vector 
with the axis of symmetry, and z , y are a Cartesian coordinate system in the 

physical plane (the z-axis coinciding with the axis of symmetry, and Y = 1 Y !I* 

Setting w = vy, we reduce this system to a form that is homogeneous (with respect 

to first derivatives) : wus==wy, WY = YU, (1) 

We introduce the special uw hodograph plane. This plane is obtained by dila- 
tation at each point of the uv hodograph plane by Y times in the direction of the 
v-axis. Let the 5 and a axes be directed horizontally to the right, and the w and 
Y axes vertically. upward. 

1. The Jacobian of the mapping in the uw plane is transformed with the aid of (1) to 
the form a (u, w) 

J=,(z,y)= uxwy - uywx = y (uuxZ - uy2) (2) 

Since J < 0 for u < 0, the mapping of the region of subsonic speed in the I+ plane.is 

locally one-sheeted (J vanishes only at isolated points). In addition, the orientation 
of corresponding contours is opposite in the xY- and au) planes. Consequently there is 
a generalization of the’law of monotonicity” of the velocity vector on the sonic line, 
established in @] for plane potential flow, which is stated below. 

Displacement along the sonic line, with the region of subsonic speeds remaining on the 
left, corresponds to monotonic decrease of 2~. 

If Y increases monotonically for such a displacement, then c also decreases, that is, 
the velocity vector rotates monotonically clockwise. The latter is true also in the 

framework of the exact equations of axisymmetric potential flow for the part of the 
sonic line where p > 0 and where the stream function $ increases for the indicated 
direction of traversal . In fact, the equations of motion have the form where (a / as, 
and 13 / as? axe derivatives in the streamline direction and normal to it, 

a In h (,,12_i) ~_~~+~, a3 -din 
dSI - d& (3) 

For 3, = I we obtain 
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For the chosen direction of traversal of the sonic line, the condition dh / dS1 > 0 is 
equivalent to the condition of monotonic increase of $. 

The system (1) is transformed in the uw plane to the form 

YUYW = Zllr Yu = Y= (4) W 

The Jacobian i = J-l can, with the use of this equation, be written in the form 

i = ZUYW - ZroYu = Y (UY f - ZW9 

In the subsonic region f can vanish only at isolated points. 

2. The equations of the characteristics in the zy and uw planes have the form 

From the first equation it follows that in a flow described by the system (1) the direction 

of the sonic line is characteristic at points K of verticality of the sonic line ; in these 

pointsJ = 0. 
It follows from (5) that at corresponding points of the Z, In y and uw planes there is 

mutual orthogonality of the characteristics of opposite families. 

If we denote derivatives along the characteristic directions in the zy and. uw planes by 

then the expressions for J and j transform to 

au au 1 aw aw 
JzY as1 asa --=----9 uy as1 asa 

dz a2 1 ay ay --=_- 
i = uY aal aoa 

-- 
2 aal a0, (6) 

3. Using the second equation (6) it is easily proved, in analogy to the case of plane 

potential flow @I, that the image of the vertex of a convex angle in the uw plane is a 
characteristic. 

For flow past a convex angular point the velocity vector changes continuously, there- 
fore its image is a continuous curve. The velokity at such a point is multi-valued ; con- 
sequently j = 0 there, that is, at least one of the derivatives ‘,ay I &,!a~ I aa2 is equal 
to zero. If the image of the angular point is not a characteristic, the-solution of the 

Cauchy problem with the conditions y = coust, aY i do = 0 gives, y = const on all char- 
acteristics issuing from the angular point, which is impossible. 

4. A line across which the Jacobian J in the zy plane changes sign is called a branch 

Lz 

line ; it is a folding edge of the image in the hodograph plane. 
In connection with the nonlinearity of the system (4) a branch 

line is not in general a characteristic. An exception is pos- 
sible only when a discontinuity in the first derivatives of the 
velocity components propagates along the characteristic. 

In a sufficiently small neighborhood of a branch line the 

W characteristics in the uw plane are located on one side of 
the folding edge. In view of the continuity of the tangent 

to a characteristic in the region of continuity of the velocity 

II vector field (5) we obtain that in the general case a branch 

Fig. 1 
line in the uw plane consists of segments, each of which is 
an envelope of characteristics of one family and the locus 
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of cusps of the other family. At a branch line there is a change in sign of derivatives 
of u and w in the direction of a characteristic of that family whose image in the 

plane is a cusp; the curvature of this characteristic changes sign in the physical plane. 

5. From the theorem of existence of a solution of the first equation (5) it follows that 

in a region of continuous supersonic flow y is a monotonic function of the arc length 
along a characteristic. We transform the uw plane into the DID plane, where t = (2/3)~c3’z. 

‘Y 
B 

I_ 
2 

K_ K- B 

B c 

The equation of the characteristics in the tic 
plane is (dw i dt!l,z = f y (i) 

so that the angle of inclination of a character- 

istic in the tw plane is a monotonic function of 
arc length. Consequently in the tw plane on 
each segment of a characteristic that does not 
contain a cusp the curvature of the characteristic 
has a constant sign; segments of a characteristic 

A that adjoin a cusp are convex to each other 
A (Fig. 1). 

Fig, 2 
6. We,consider a characteristic emanating 

from an arbitrary point .O of the sonic line. 1f.y decreases for a displacement along it 

from the sonic line, then w > wo on the characteristic of the first family and w < w. 
on the characteristic of the second family. 

It is sufficient to give the proof for the characteristic of the first family. We condider 

the case when there are cusps on the characteristic in the tw plane, since otherwise the 
proof is trivial. We divide the characteristic into segments between cusps, and number 
them outward from the sonic line. On the first segment we have w > wo. The second 
segment lies not lower than the tangent to the first segment at its right-most point. 

Therefore on the second segment we also have w > wo , and so on. 

7. We will call a point K of verticality of the sonic line the point K+(or K_) if the 
sonic line at this point is convex on the side of the supersonic (or subsonic) region. 

We show that within the flow region there exists no point K_. We assume that a point 
K_ exists. We consider a point A of the sonic line at which yA < yK_, and trace from 
it the characteristic dB of the second family. If point A is sufficiently close to point 
K_, this characteristic again approaches the sonic line and intersects it, either at point 

K_ or at some point B where yB > yK_ (Fig. 2) ( l I. 

It follows from Sect. 6 that wA < wn. On the other hand, from the law of monotonicity 

of w on the sonic line from Sect.1 we obtain the reverse inequality wB < 10~~. Thus the 

assumption of the existence of a point K_ has led to a contradiction. As a consequence 
we obtain from this that no more than one point K, can exist on the sonic line. 

8. We determine the value of the angle of inclination of the solnic lin? at the body. 
We will call the contour of the body whose equation is y = (Cl5 + G) ’ the w-line. 

If the curvature of the contour at any point is greater (less) than the curvature of the 

l ) Point K_ exists for rotational flow. Then both cases of the arrangement of character- 
istics shown in Fig. 2 are possible [4]. 
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w-line contour. we will call it w-convex (w.-concave). The image of the:w -line con- 
tour in rhe uli, plane lies on the straight line w = const. 

It follows from Eq. (1) that at the sonic point on the contour 
&b aw dw -- 
ay-az=dz 

so that u,, < 0 at the sonic point of a w-convex contour and uu > 0 at the sonic point 

of a w-concave contour. 
Hence follows the rule: For flow past a w-convex ( w-concave) contour the tangent 

to the sonic line at the contour is obtained by counterclockwise (clockwise) rotation 

through an acute angle of the direction of the z-axis that corresponds to increasing 

velocity. 
We remark that in the framework of the full equations (3) another relation holds, 

which is asymptotically equivalent (for U, u --. 0) and differs from this in that the words 

” w-convex” and ” z-axis” are replaced by the words “convex” and “velocity vector”. 

9. We determine the value of the angle of inclination of the sonic line at the sonic 
point of the shock wave that arises in uniform supersonic ilow ahead of the body. 

We denote by 15 the acute angle between the tangent to the shock wave and the y-axis. 

with (I > 0 if the angle is measured counterclockwise from the tangent to the shock 
wave. The relations at the shock wave in the transonic approximation are expressed in 
the form U = 26% -u,, w = 26y (U,.& - 6%) 

where Us is the speed of the free stream. 
Adjoining to Eqs. (1) the expressions for the derivatives of u and w in the direction of 

the shock wave, simplified in the transonic speed range, 

U.&S + uu= $ = .$ $ = 466’ 

dw aw d8 
w=s+wv= dy - #j dy +~~=28(U,--~‘~+2y(u,-3636’ 

---_ 

we obtain a system for the determination of tie derivatives us, uyr w,, wy in the case 
when the curvature of the shock wave is bounded. (In the case of infinite curvature of 
the shock wave the singularity is the same as in plane flow). 

At the sonic point of the shock wave 

% = $ (I5 - yh’), u =+(3y*~-6) 
I 

so that we obtain for the angle of inclination y of the sonic line to the u -axis 

Table 1 

Fig. 3 

i<d<30<d<id<Od> 
+ 

5 

d<’ 

i 
+ - 
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Analyzing the signs of 7, uX, uy and 6’, we find that there can exist only the cases 
shown in Table 1. The first row of the Table gives the case number, the second row the 
range of d = b / yb’, and the remaining rows the signs of the quantities 6, b;‘, IL, u,,, y. 

The cases are shown in Fig. 3 by the corresponding numbers (where the heavy line is the 

shock wave and the thin one the the sonic line). 
The results of this Sect. agree asymptotically (for Y, w - 0) with the analogous rela- 

tions obtained in [5] for the exact equations. 

10. The results of Sects. 7-9 allow a classification to be established of the minimal 
regions of influence of the mixed flow for flow past bodies of various shapes with detached 
“ack waves. For example, for flow past a w-convex body located on the axis of sym- 
(etry, only two types of minimal region of influence can exist (Fig.4): with a point,K+ 

(for 1 < d < 3) and without one (for 0 < d < 1). 

&& 
Fig. 4 

11. The property of Sect.6 permits 
generalization to the case of axisymmetric 
transonic flow of the result. established in 

p] for plane flow, regarding the destruction 
by a specific deformation of the body of 
continuous supersonic flow in the character- 
istic triangle ABC (Fig. 4) adjacent to the 

minimal region of influence. 

We assume the existence of a w-convex 

body such that in a uniform supersonic stream with detached shock wave there exists 
continuous supersonic flow in the triangle ABC (point A being either the sonic point 

on the shock wave or the point K, of the sonic line. In other words, existence is assumed 

“in the large” of a continuous solution of “Problem 3” ( p], p. 56) for a given distribution 
of velocity on the characteristic AB and the condition of no flow through the wall BC. 

In this case the bounds wB > wA > WC follow from Sect. 6. Therefore on the segment 
BC of the contour there exists a point D at which wD = WA’ 

We subject the body to a continuous deformation, changing its contour downstream of 
some point E of the tangent to the contour at this point and thus shifting point hy up- 
stream to point D. With the location of point E coinciding with point D, continuous 

supersonic flow in the triangle ABC will no longer exist because of violation of the 
bound wD > wc. Thus for point E sufficiently close to point D , Problem 3 in the tri- 
angle ABC will no longer have a solution in the large. This means that there appears 

either a local zone of subsonic speeds, or a shock wave. 

12. We consider the subregion of supersonic speeds that is contained in the minimal 
region of influence of the mixed flow. This subregion is covered by characteristics of 

both families that originate form the sonic line ; following p] we will call it zone 1. 

Zone 1 may be of two types: in zone la the quantity Y decreases with displacement 
along the characteristic in the direction of the sonic line, in zone lb it increases. 

We prove that the mapping of zone la into the tw plane is single-sheeted. 

For a multiple-sheeted mapping (having in mind local single-sheetedness) a branch 
line appears, which in the lU plane is an envelope of characteristics of one family 
(Sect.4). We show that characteristics drawn on the image of zone la do not intersect 
(and heace have no envelope). 
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We consider the characteristic 1~0 = wo (to) in the tw plane that comes out of an 
arbitrary point of the sonic line ; let it be a characteristic of the first family. Through 
each of its points we pass a sraight line tangent to the characteristic of the second family; 

in view of the smoothness of the characteristic w. = w. (to), these lines will not have 

an envelope in a sufficiently small neighborhood of it. Without loss of generality we 
may assume that the segment of the original characteristic under consideration does not 

contain a cusp. 
We assign on each straight line a direction field parallel to the tangent to the charac- 

teristic no = uto (tJ at the point of intersection with this straight line. For determining 

in the vicinity of the original characteristic the integral curves W = W(t) of this field 

we obtain the system 
dW (t (to)) dwo (to) dwo (to) 

dt =-&-’ W (t) - wo (to) = - (t - to) dto 

Differentiating the second equation with respect to to and eliminating dW / dt gives 

Hence 
dwr, -% 

It- 
I I 

c 
tol=C 6 =G 

If a segment of the characteristic w o = w. (to) adjoins the sonic line and does not 

contain a cusp, Y (to) is a decreasing function, and the auxiliary curve emitted from the 
line t = 0 does not intersect the characteristic wg = wo (t} for C # 0. 

We suppose that in zone la there exists a branch line - an envelope of characteristics 
of the first family. We draw the segment of the characteristic wo = wo (to) from the line 
t = 0 to its intersection with the branch line at point 0. In the vicinity of point 0 

two cases may occur: in the first, the characteristic lies below the envelope ; in the 
second, on the contrary, the characteristic lies above the envelope. 

To begin with, we consider the first case (Fig. 5). In the strip o < t < to we draw the 
auxiliary curve W = W (t) above the characteristic w. = w. (to). We denote by the 
numeral 1 the intersection of the curve W = W (t) with the branch line ; this point 

exists since 1 t - to 1 > 0. Because the curve W = W (t) is sufficiently close to the char- 
acteristic ~0 = wo (to) we may assume that in the vicinity of point 1 the branch line 

1- 0 is located in the sector between the rays of the line ,W (t) and the straight line 
w = ICY. on which t >, tl. 

If we denote the angle of inclination of the characteristic of the first family at point 

1 by (dw I d&, then this means that 

O< rZJIG (\%)1 
(51 

We draw the segment l-2 of the characteristic from point 1 to its intersection with 

the characteristic w. = w. (to) at point 2. Because points 1 and 0 are sufficiently 

close, we may assume that the entire segment l-2 lies on the same sheet of the Rie- 

mann surface for the mapping as the segment of the characteristic w. = wo (to); this 
means that the segment 1-2 does not contain a cusp, and at every point is convex on 

the side of the region lying below the characteristic l-2 in the tu: plane (Fig. 5). From 
point 2’ we draw the tangent to the characteristic l-2 at point 8 to its intersection 
with the auxiliary curve W = W(t) at point 3; here t, > ti. From the construction 
of the triangle 1-u “-3 and consideration of the direction of convexity of the charac- 
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teristics lu,, = w0 (to) and 1-2 follows the inequality, opposite to (8) 

Here the inequality sign cannot be replaced by an equali sign, because y + Conat 

along the characteristic. Thus the case shown in Fig. 5 cannot exist. 

Fig. 5 Fig. 6 

We now consider the second case (Fig. 6). In the strip 0 < t < to we draw the auxil- 
iaty curve below the characteristic w 0 = w. (to). We denote by the numeral 1 the point 

of intersection of the curve W = W (t) with the branch line ; this point exists because 

It- to 1 > 0. As in the previous case we first obtain 

(9) 

Just as in the previous case we draw the segments l-2 and 2-3 ; the segment I-2‘ 

is convex on the side of the region under the characteristic Z-2 , and t, < tl. 
We denote by E the length of the segment 2-3. For a + 0 we have the estimates 

P (1, 2) = 0 (a), p (1, 3) = 0 (8 

where P is the length of the corresponding segment 
From the construction of the triangle l-2-3 we obtain 

Here 0 (e) and 0 (ea) are positive quantities of order e and ea. For sufficiently small 

values of e we obtain the inequality, opposite to (9) 

(dwldr)i < (dW/dt)l 

Thus in the second case the formation of an envelope of characteristics in the tw plane 
cannot exist 

13. The property obtained in Sect. 12 permits an easy extension to the case of axi- 
symmetric transon~c flow in zone la of the theotern on the breakdown of plane continu- 
ous supersonic flow in zone 1 due to straightening of a section of arbitrary length of the 
contour bounding this zone @J. In this extension the role of straightening is played by 
w-straightening of the body contour. 

In fact, according to Sect. 12 we find that if the shape of the body contour bounding 
zone la is given in the form of the curve w = w (t), then 
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Since a w-straightened contour violates this bound (on it dw I dt = O),either a shock 
wave arises or the location of zone la changes so that the w-straightened part no longer 
belongs to its boundary. In the case of uniqueness of the solution in zone la and its 
continuous dependence on changes in the boundary conditions, the second possibility 
must be rejected. For arbitrarily small length of the’co-straightened part of the contour, 

the length of the resulting shock wave must be a quantity of the same order of smallness. 
In the case of zone lb, extension of the theorem of [2] can be obtained for that sub- 

region lying in a sufficiently small neighborhood of the sonic point on the body whose 
mapping in the tw plane is single-sheeted (up to the carrying out of ‘w-straightening 

of a part of the contour in this vicinity). We carry out the proof here analogously to [8]. 

Integrating Eq. (7) along the characteristics, we obtain 
t t 

w (t) = 
s 

y (t, w (t)) dt + h, w (t) = - 
s 

Y (t, w (t)) dt + CL 

0 0 

Here ?, and p are constants equal to the values of w at the points of intersection of the 
characteristics with the sonic line. Differentiating these equations with respect to h and 
k, we obtain t 

q = 1 + Y[X + 
s 

Y, (4 w (t)) whdt> w,, = - yf,, 

0 

t 

Hence 

wy = I- Ytl, - 5 yw P, w (9 w,dl, wp=yyr 
P 

0 

t t 
2w, = i + ytiw,,dt, 

s 
2w, = 1 - S y,w,dt W) 

0 0 

We show that w-straightening of the contour in a sufficiently small vicinity of the 

sonic point may not bring only violation of single-sheetedness of the mapping of zone 
lb in the tw plane. In fact, if the contour intersects a branch line, then at that point 

the derivative in the direction of one of the characteristics changes sign; let this be 

&u I asi. The derivative aw / aq can be represented in the form 

aw ’ __dw)&l’T-x~ aw h P - J-,P, 
as1 - ap dP pr” + $2 

The Lame coefficient h, does not vanish for 0 < t < w , because this is only possible 
either at points of tangency of characteristics or at points at which simultaneously 
k = U and b = 0. The latter is impossible at isolated points, since there are not mul- 
tiple singular points on a characteristic, and the equality pz = urr = 0 on some line 
means that this line is a characteristic and that it is a branch line. As shown in Sect.4, 
this is possible only if a weak discontinuity in the first derivative of a velocity compon- 

ent propagates along the characteristic ; it is always possible to carry out w-straighten- 

ing so that the curvature of the contour is left continuous. Thus it is found that at the 
point of intersection of a branch line with the contour the derivative wu vanishes. 

It follows from Eq. (10) that at the sonic point of the contour .wP =.V2, so that on a 
smooth contour there exists a neighborhood of the sonic point in which wP > 6) 0. 
With w-straightening of part of the contour in this neighborhood, the derivative wu 
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changes by not less than b, and the magnitude of this change (which can arise only on 
account of a change in the value of the integral in (10)) depends not upon the length of 
the w-straightened part, but only on its location in the vicinity of the sonic point. 

Thus if the.w-straightened contour in the indicated neighborhood is not accompanied 

by formation of a shock wave, then either the uniqueness of the solution is violated or 
its continuous dependence on changes in boundary conditions. 

14, For investigating plane potential flows close to prescribed ones, the derivation of 

“equations of variation” in the variables of the hodograph for the unperturbed flow was 

given in p$ These equations have repeatedly been used subsequently for investigating 
the fundamental problems of transonic flow theory by the ABC method of Friedrichs. 

We derive analogous equations for the study of axisymmetric transonic flow. Taking 
the original equations in the form (I.), we introduce the stream function 9 and potential 

cp by the equations 

% = w (k + 1)-r, $=Y $ (k + 1)-l - y, ‘p, = i + u (k + 1)-r, qv = w [Y (k + III-’ 

Varying these equations at a fixed point of the zy plane ahd denoting the variations by 
primes, we obtain 

(k+i)cp,‘=u’, Y(k+i&,‘=w’, (k+l)$r’=w’, (k+I)$+yuu’ 

Hence 

We take as independent variables those of the hodograph of the unperturbed flow u, 

w. substituting the equations 

9 a a a a a 
x=&- ur+ awW%l --- 

ay-au%+ 57% 
into Eqs. (11). we obtain 

Combining these equations we obtain, with the use of (ll), 

$,’ = ‘p,‘, 9,’ = Y2UcpW 

Eliminating #or *‘from this system, we obtain respectively 

It is interesting to note that these equations differ from the corresponding equations of 

plane transonic flow only by the positive coefficient ~2; which is determined from the 

basic solution. 
The fact that ,ya depends on both u and w makes impossible a direct carry-over of 

the results obtained in the theory of plane flow. 
For an investigation of uniqueness of the solution of the problem “in the small”, the 

contours of the body remain unchanged. Therefore the corresponding boundary values 
are written, as in the plane case, in the form +i = Ci on each of the curves wi = wi (u) 

that represents the contour of the body in the basic flow. 
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We consider three typical game problems in conflict-control systems. We estab- 
l&h that in the regular case the optimal methods of control can be approximated 

by continuous strategies so as to achieve an effect as near optimal as desired 
(from the viewpoint of the pursuer or the pursued). 

1. Let us consider the motion I (t) = (si (t)}, (i = 1, . . . . n) described by the vector 
differential equation 

dz / dt = A (t)z + B (t)u - C (0~ + f (t) (1.1) 

Here A (t), B (t), C (t) are matrices of dimensions n X II, n X r, n X s respectively; 
f (t) is an n-dimensional perturbation vector ; u and u are control vectors of dimensions 


